Saturday 25 November 2017

Anyone can learn math whether they're in higher math at school or just looking to brush up on the basics. After discussing ways to be a good math student, this article will teach you the basic progression of math courses and will give you the basic elements that you'll need to learn in each course. Then, the article will go through the basics of learning arithmetic, which will help both kids in elementary school and anyone else who needs to brush up on the fundamentals.

art1
Keys to Being a Good Math Student

  1. 1
    Show up for class. When you miss class, you have to learn the concepts either from a classmate or from your textbook. You'll never get as good of an overview from your friends or from the text as you will from your teacher.
    • Come to class on time. In fact, come a little early and open your notebook to the right place, open your textbook and take out your calculator so that you're ready to start when your teacher is ready to start.
    • Only skip class if you are sick. When you do miss class, talk to a classmate to find out what the teacher talked about and what homework was assigned.
  2. 2
    Work along with your teacher. If your teacher works problems at the front of your class, then work along with the teacher in your notebook.
    • Make sure that your notes are clear and easy to read. Don't just write down the problems. Also write down anything that the teacher says that increases your understanding of the concepts.
    • Work any sample problems that your teacher posts for you to do. When the teacher walks around the classroom as you work, answer questions.
    • Participate while the teacher is working a problem. Don't wait for your teacher to call on you. Volunteer to answer when you know the answer, and raise your hand to ask questions when you're unsure of what's being taught.
  3. 3
    Do your homework the same day as it's assigned. When you do the homework the same day, the concepts are fresh on your mind. Sometimes, finishing your homework the same day isn't possible. Just make sure that your homework is complete before you go to class.
  4. 4
    Make an effort outside of class if you need help. Go to your teacher during his or her free period or during office hours.
    • If you have a Math Center at your school, then find out the hours that it's open and go get some help.
    • Join a study group. Good study groups usually contain 4 or 5 people at a good mix of ability levels. If you're a "C" student in math, then join a group that has 2 or 3 "A" or "B" students so that you can raise your level. Avoid joining a group full of students whose grades are lower than yours.[1]

Wednesday 15 November 2017

Ramanujan number




Wednesday, October 14, 2015


Mathematicians find 'magic key' to drive Ramanujan's taxi-cab number

A British taxi numbered 1729 sparked the most famous anecdote in math and led to the origin of "taxi-cab numbers." The incident is included in an upcoming biopic of Ramanujan, "The Man Who Knew Infinity," featuring Dev Patel in the lead role. Above is a still from the movie. (Pressman Films.)

By Carol Clark

Taxi-cab numbers, among the most beloved integers in math, trace their origins to 1918 and what seemed like a casual insight by the Indian genius Srinivasa Ramanujan. Now mathematicians at Emory University have discovered that Ramanujan did not just identify the first taxi-cab number – 1729 – and its quirky properties. He showed how the number relates to elliptic curves and K3 surfaces – objects important today in string theory and quantum physics.

“We’ve found that Ramanujan actually discovered a K3 surface more than 30 years before others started studying K3 surfaces and they were even named,” says Ken Ono, a number theorist at Emory. “It turns out that Ramanujan’s work anticipated deep structures that have become fundamental objects in arithmetic geometry, number theory and physics.”

Ono and his graduate student Sarah Trebat-Leder are publishing a paper about these new insights in the journal Research in Number Theory. Their paper also demonstrates how one of Ramanujan’s formulas associated with the taxi-cab number can reveal secrets of elliptic curves.

“We were able to tie the record for finding certain elliptic curves with an unexpected number of points, or solutions, without doing any heavy lifting at all,” Ono says. “Ramanujan’s formula, which he wrote on his deathbed in 1919, is that ingenious. It’s as though he left a magic key for the mathematicians of the future. All we had to do was recognize the key’s power and use it to drive solutions in a modern context.”

“This paper adds yet another truly beautiful story to the list of spectacular recent discoveries involving Ramanujan’s notebooks,” says Manjul Bhargava, a number theorist at Princeton University. “Elliptic curves and K3 surfaces form an important next frontier in mathematics, and Ramanujan gave remarkable examples illustrating some of their features that we didn’t know before. He identified a very special K3 surface, which we can use to understand a certain special family of elliptic curves. These new examples and insights are certain to spawn further work that will take mathematics forward.”

A close-up of the taxi-cab plate, in a scene from the upcoming movie, "The Man Who Knew Infinity." (Pressman Films.)

Ramanujan, a largely self-taught mathematician, seemed to solve problems instinctively and said his formulas came to him in the form of visions from a Hindu goddess. During the height of British colonialism, he left his native India to become a protégé of mathematician G.H. Hardy at Cambridge University in England.

By 1918, the British climate and war-time rationing had taken their toll on Ramanujan, who was suffering from tuberculosis. He lay ailing in a clinic near London when Hardy came to visit.

Wanting to cheer up Ramanujan, Hardy said that he had arrived in taxi number 1729 and described the number “as rather a dull one.” To Hardy’s surprise, Ramanujan sat up in bed and replied, “No, Hardy, it’s a very interesting number! It’s the smallest number expressible as the sum of two cubes in two different ways.”

Ramanujan, who had an uncanny sense for the idiosyncratic properties of numbers, somehow knew that 1729 can be represented as 1 cubed + 12 cubed and 9 cubed + 10 cubed, and no smaller positive number can be written in two such ways.

This incident launched the “Hardy-Ramanujan number,” or “taxi-cab number,” into the world of math. To date, only six taxi-cab numbers have been discovered that share the properties of 1729. (These are the smallest numbers which are the sum of cubes in n different ways. For n=2 the number is 1729.)

The original taxi-cab number 1729 is a favorite nerdy allusion in television sitcoms by Matt Groening. The number shows up frequently as an inside joke in episodes of “Futurama” and the “The Simpsons.”

But like much of Ramanujan’s discoveries, 1729 turned out to contain hidden meanings that make it much more than a charming mathematical oddity.

“This is the ultimate example of how Ramanujan anticipated theories,” Ono says. “When looking through his notes, you may see what appears to be just a simple formula. But if you look closer, you can often uncover much deeper implications that reveal Ramanujan’s true powers.”

Jeremy Irons portrays G. H. Hardy and Dev Patel plays Ramanujan in "The Man Who Knew Infinity." (Pressman Films.)

Much of Ono’s career is focused on unraveling Ramanujan mysteries. In 2013, during a trip to England to visit number theorists Andrew Granville and John Coates, Ono rummaged through the Ramanujan archive at Cambridge. He came across a page of formulas that Ramanujan wrote a year after he first pointed out the special qualities of the number 1729 to Hardy. By then, the 32-year-old Ramanujan was back in India but he was still ailing and near death.

“From the bottom of one of the boxes in the archive, I pulled out one of Ramanujan’s deathbed notes,” Ono recalls. “The page mentioned 1729 along with some notes about it. Andrew and I realized that he had found infinitely near misses for Fermat’s Last Theorem for exponent 3. We were shocked by that, and actually started laughing. That was the first tip-off that Ramanujan had discovered something much larger.”

Fermat’s Last Theorem is the idea that certain simple equations have no solutions – the sum of two cubes can never be a cube. Ramanujan used an elliptic curve – a cubic equation and two variables where the largest degree is 3 – to produce infinitely many solutions that were nearly counter examples to Fermat’s Last Theorem.

Elliptic curves have been studied for thousands of years, but only during the last 50 years have applications been found for them outside of mathematics. They are important, for example, for Internet cryptography systems that protect information like bank account numbers.

Ono had worked with K3 surfaces before and he also realized that Ramanujan had found a K3 surface, long before they were officially identified and named by mathematician André Weil during the 1950s. Weil named them in honor of three algebraic masters – Kummer, Kähler and Kodaira – and the mountain K2 in Kashmir.

Just as K2 is an extraordinarily difficult mountain to climb, the process of generalizing elliptic curves to find a K3 surface is considered an exceedingly difficult math problem.

Ono and Trebat-Leder put all the pieces in Ramanujan’s notes together to produce the current paper, illuminating his finds and translating them into a modern framework.

“Ramanujan was using 1729 and elliptic curves to develop formulas for a K3 surface,” Ono says. “Mathematicians today still struggle to manipulate and calculate with K3 surfaces. So it comes as a major surprise that Ramanujan had this intuition all along.”

Ramanujan is well-known in India, and among mathematicians worldwide. He may soon become more familiar to wider audiences through an upcoming movie, “The Man Who Knew Infinity,” by Pressman Films. Ono served as a math consultant for the movie, which stars Dev Patel as Ramanujan and Jeremy Irons as Hardy. (Both Ono and Bhargava are associate producers for the film.)

“Ramanujan’s life and work are both a great human story and a great math story,” Ono says. “And I’m glad that more people are finally going to get to enjoy it.”

Related:
Math shines with the stars in 'The Man Who Knew Infinity'
Doing math with movie stars
New theories reveal the nature of numbers 
Math theory gives glimpse into the magical mind of Ramanujan

2 comments:



Measaurment



Measurement

From Wikipedia, the free encyclopedia
Measurement is the assignment of a number to a characteristic of an object or event, which can be compared with other objects or events.[1][2] The scope and application of a measurement is dependent on the context and discipline. In the natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the International vocabulary of metrology published by the International Bureau of Weights and Measures.[2] However, in other fields such asstatistics as well as the social and behavioral sciences, measurements can have multiple levels, which would include nominal, ordinal, interval, and ratio scales.[1][3]
Measurement is a cornerstone of tradesciencetechnology, and quantitative research in many disciplines. Historically, many measurement systems existed for the varied fields of human existence to facilitate comparisons in these fields. Often these were achieved by local agreements between trading partners or collaborators. Since the 18th century, developments progressed towards unifying, widely accepted standards that resulted in the modern International System of Units (SI). This system reduces all physical measurements to a mathematical combination of seven base units. The science of measurement is pursued in the field of metrology.

A typical tape measure with bothMetric and Imperial units and two US pennies for comparison

Methodology[edit]

The measurement of a property may be categorized by the following criteria: typemagnitudeunit, and uncertainty.[citation needed] They enable unambiguous comparisons between measurements.
  • The type or level of measurement is a taxonomy for the methodological character of a comparison. For example, two states of a property may be compared by ratio, difference, or ordinal preference. The type is commonly not explicitly expressed, but implicit in the definition of a measurement procedure.
  • The magnitude is the numerical value of the characterization, usually obtained with a suitably chosen measuring instrument.
  • unit assigns a mathematical weighting factor to the magnitude that is derived as a ratio to the property of an artifact used as standard or a natural physical quantity.
  • An uncertainty represents the random and systemic errors of the measurement procedure; it indicates a confidence level in the measurement. Errors are evaluated by methodically repeating measurements and considering the accuracy and precision of the measuring instrument.

Standardization of measurement units[edit]

Measurements most commonly use the International System of Units (SI) as a comparison framework. The system defines seven fundamental unitskilogrammetrecandela,secondamperekelvin, and mole. Six of these units are defined without reference to a particular physical object which serves as a standard (artifact-free), while the kilogram is still embodied in an artifact which rests at the headquarters of the International Bureau of Weights and Measures in Sèvres near Paris. Artifact-free definitions fix measurements at an exact value related to a physical constant or other invariable phenomena in nature, in contrast to standard artifacts which are subject to deterioration or destruction. Instead, the measurement unit can only ever change through increased accuracy in determining the value of the constant it is tied to.

The seven base units in the SI system. Arrows point from units to those that depend on them.
The first proposal to tie an SI base unit to an experimental standard independent of fiat was by Charles Sanders Peirce (1839–1914),[4]who proposed to define the metre in terms of the wavelength of a spectral line.[5] This directly influenced the Michelson–Morley experiment; Michelson and Morley cite Peirce, and improve on his method.[6]

Standards[edit]

With the exception of a few fundamental quantum constants, units of measurement are derived from historical agreements. Nothing inherent in nature dictates that an inch has to be a certain length, nor that a mile is a better measure of distance than a kilometre. Over the course of human history, however, first for convenience and then for necessity, standards of measurement evolved so that communities would have certain common benchmarks. Laws regulating measurement were originally developed to prevent fraud in commerce.
Units of measurement are generally defined on a scientific basis, overseen by governmental or independent agencies, and established in international treaties, pre-eminent of which is the General Conference on Weights and Measures (CGPM), established in 1875 by theMetre Convention, overseeing the International System of Units (SI) and having custody of the International Prototype Kilogram. The metre, for example, was redefined in 1983 by the CGPM in terms of light speed, while in 1960 the international yard was defined by the governments of the United States, United Kingdom, Australia and South Africa as being exactly 0.9144 metres.
In the United States, the National Institute of Standards and Technology (NIST), a division of the United States Department of Commerce, regulates commercial measurements. In the United Kingdom, the role is performed by the National Physical Laboratory (NPL), in Australia by the National Measurement Institute,[7] in South Africa by the Council for Scientific and Industrial Research and in India the National Physical Laboratory of India.

Units and systems[edit]


Four measuring devices having metric calibrations

Imperial and US Customary systems[edit]

Before SI units were widely adopted around the world, the British systems of English units and later imperial units were used in Britain, theCommonwealth and the United States. The system came to be known as U.S. customary units in the United States and is still in use there and in a few Caribbean countries. These various systems of measurement have at times been called foot-pound-second systems after the Imperial units for length, weight and time even though the tons, hundredweights, gallons, and nautical miles, for example, are different for the U.S. units. Many Imperial units remain in use in Britain, which has officially switched to the SI system—with a few exceptions such as road signs, which are still in miles. Draught beer and cider must be sold by the imperial pint, and milk in returnable bottles can be sold by the imperial pint. Many people measure their height in feet and inches and their weight in stone and pounds, to give just a few examples. Imperial units are used in many other places, for example, in many Commonwealth countries that are considered metricated, land area is measured in acres and floor space in square feet, particularly for commercial transactions (rather than government statistics). Similarly, gasoline is sold by the gallon in many countries that are considered metricated.

Metric system[edit]

The metric system is a decimal system of measurement based on its units for length, the metre and for mass, the kilogram. It exists in several variations, with different choices of base units, though these do not affect its day-to-day use. Since the 1960s, the International System of Units (SI) is the internationally recognised metric system. Metric units of mass, length, and electricity are widely used around the world for both everyday and scientific purposes.
The metric system features a single base unit for many physical quantities. Other quantities are derived from the standard SI units. Multiples and fractions are expressed as powers of 10 of each unit. When smaller or larger units are more convenient for given use, metric prefixes can be added to the base unit to denote its multiple by a power of ten: a thousandth (10−3) of a metre is a millimetre, while a thousand (103) metres is akilometre. Unit conversions are thus always simple, so that convenient magnitudes for measurements are achieved by simply moving the decimal place: 1.234 metres is 1234 millimetres or 0.001234 kilometres. The use of fractions, such as 2/5 of a metre, is not prohibited, but uncommon. There is no profusion of different units with different conversion factors as in the Imperial system which uses, for example, inches, feet, yards,fathoms, and rods for length.

International System of Units[edit]

The International System of Units (abbreviated as SI from the French language name Système International d'Unités) is the modern revision of themetric system. It is the world's most widely used system of units, both in everyday commerce and in science. The SI was developed in 1960 from the metre-kilogram-second (MKS) system, rather than the centimetre-gram-second (CGS) system, which, in turn, had many variants. During its development the SI also introduced several newly named units that were previously not a part of the metric system. The original SI units for the seven basic physical quantities were:[8]
Base quantityBase unitSymbolCurrent SI constantsNew SI constants (proposed)[9]
timesecondshyperfine splitting in Cesium-133same as current SI
lengthmetremspeed of light in vacuum, csame as current SI
masskilogramkgmass of International Prototype Kilogram (IPK)Planck's constanth
electric currentampereApermeability of free spacepermittivity of free spacecharge of the electron, e
temperaturekelvinKtriple point of waterabsolute zeroBoltzmann's constantk
amount of substancemolemolmolar mass of Carbon-12Avogadro constant NA
luminous intensitycandelacdluminous efficacy of a 540 THz sourcesame as current SI
The mole was subsequently added to this list and the degree Kelvin renamed the kelvin.
There are two types of SI units, base units and derived units. Base units are the simple measurements for time, length, mass, temperature, amount of substance, electric current and light intensity. Derived units are constructed from the base units, for example, the watt, i.e. the unit for power, is defined from the base units as m2·kg·s−3. Other physical properties may be measured in compound units, such as material density, measured in kg/m3.

Converting prefixes[edit]

The SI allows easy multiplication when switching among units having the same base but different prefixes. To convert from metres to centimetres it is only necessary to multiply the number of metres by 100, since there are 100 centimetres in a metre. Inversely, to switch from centimetres to metres one multiplies the number of centimetres by 0.01 or divide centimetres by 100.

Length[edit]


A 2-metre carpenter's ruler
ruler or rule is a tool used in, for example, geometrytechnical drawing, engineering, and carpentry, to measure lengths or distances or to draw straight lines. Strictly speaking, the ruler is the instrument used to rule straight lines and the calibrated instrument used for determining length is called a measure, however common usage calls both instruments rulers and the special name straightedge is used for an unmarked rule. The use of the word measure, in the sense of a measuring instrument, only survives in the phrase tape measure, an instrument that can be used to measure but cannot be used to draw straight lines. As can be seen in the photographs on this page, a two-metre carpenter's rule can be folded down to a length of only 20 centimetres, to easily fit in a pocket, and a five-metre-long tape measure easily retracts to fit within a small housing.

Some special names[edit]

Some non-systematic names are applied for some multiples of some units.
  • 100 kilograms = 1 quintal; 1000 kilogram = 1 metric tonne;
  • 10 years = 1 decade; 100 years = 1 century; 1000 years = 1 millennium

Building trades[edit]

The Australian building trades adopted the metric system in 1966 and the units used for measurement of length are metres (m) and millimetres (mm). Centimetres (cm) are avoided as they cause confusion when reading plans. For example, the length two and a half metres is usually recorded as 2500 mm or 2.5 m; it would be considered non-standard to record this length as 250 cm.[citation needed]

Surveyor's Trade[edit]

American surveyors use a decimal-based system of measurement devised by Edmund Gunter in 1620. The base unit is Gunter's chain of 66 feet (20 m) which is subdivided into 4 rods, each of 16.5 ft or 100 links of 0.66 feet. A link is abbreviated "lk," and links "lks" in old deeds and land surveys done for the government.

Time[edit]

Time is an abstract measurement of elemental changes over a non spatial continuum. It is denoted by numbers and/or named periods such as hoursdaysweeksmonths andyears. It is an apparently irreversible series of occurrences within this non spatial continuum. It is also used to denote an interval between two relative points on this continuum.

Mass[edit]

Mass refers to the intrinsic property of all material objects to resist changes in their momentum. Weight, on the other hand, refers to the downward force produced when a mass is in a gravitational field. In free fall, (no net gravitational forces) objects lack weight but retain their mass. The Imperial units of mass include the ouncepound, and ton. The metric units gram and kilogram are units of mass.
One device for measuring weight or mass is called a weighing scale or, often, simply a scale. A spring scale measures force but not mass, a balance compares weight, both require a gravitational field to operate. Some of the most accurate instruments for measuring weight or mass are based on load cells with a digital read-out, but require a gravitational field to function and would not work in free fall.

Economics[edit]

The measures used in economics are physical measures, nominal price value measures and real price measures. These measures differ from one another by the variables they measure and by the variables excluded from measurements.

Survey research[edit]

In the field of survey research, measures are taken from individual attitudes, values, and behavior using questionnaires as a measurement instrument. As all other measurements, measurement in survey research is also vulnerable to measurement error, i.e. the departure from the true value of the measurement and the value provided using the measurement instrument.[10]. In substantive survey research, measurement error can lead to biased conclusions and wrongly estimated effects. In order to get accurate results, when measurement errors appear, the results need to be corrected for measurement errors.

Difficulties[edit]

Since accurate measurement is essential in many fields, and since all measurements are necessarily approximations, a great deal of effort must be taken to make measurements as accurate as possible. For example, consider the problem of measuring the time it takes an object to fall a distance of one metre (about 39 in). Using physics, it can be shown that, in the gravitational field of the Earth, it should take any object about 0.45 second to fall one metre. However, the following are just some of the sources of error that arise:
  • This computation used for the acceleration of gravity 9.8 metres per second squared (32 ft/s2). But this measurement is not exact, but only precise to two significant digits.
  • The Earth's gravitational field varies slightly depending on height above sea level and other factors.
  • The computation of .45 seconds involved extracting a square root, a mathematical operation that required rounding off to some number of significant digits, in this case two significant digits.
Additionally, other sources of experimental error include:
  • carelessness,
  • determining of the exact time at which the object is released and the exact time it hits the ground,
  • measurement of the height and the measurement of the time both involve some error,
  • Air resistance.
Scientific experiments must be carried out with great care to eliminate as much error as possible, and to keep error estimates realistic.

Definitions and theories[edit]

Classical definition[edit]

In the classical definition, which is standard throughout the physical sciences, measurement is the determination or estimation of ratios of quantities.[11] Quantity and measurement are mutually defined: quantitative attributes are those possible to measure, at least in principle. The classical concept of quantity can be traced back to John Wallis and Isaac Newton, and was foreshadowed in Euclid's Elements.[11]

Representational theory[edit]

In the representational theory, measurement is defined as "the correlation of numbers with entities that are not numbers".[12] The most technically elaborated form of representational theory is also known as additive conjoint measurement. In this form of representational theory, numbers are assigned based on correspondences or similarities between the structure of number systems and the structure of qualitative systems. A property is quantitative if such structural similarities can be established. In weaker forms of representational theory, such as that implicit within the work of Stanley Smith Stevens,[13] numbers need only be assigned according to a rule.
The concept of measurement is often misunderstood as merely the assignment of a value, but it is possible to assign a value in a way that is not a measurement in terms of the requirements of additive conjoint measurement. One may assign a value to a person's height, but unless it can be established that there is a correlation between measurements of height and empirical relations, it is not a measurement according to additive conjoint measurement theory. Likewise, computing and assigning arbitrary values, like the "book value" of an asset in accounting, is not a measurement because it does not satisfy the necessary criteria.

Information theory[edit]

Information theory recognises that all data are inexact and statistical in nature. Thus the definition of measurement is: "A set of observations that reduce uncertainty where the result is expressed as a quantity."[14] This definition is implied in what scientists actually do when they measure something and report both the mean and statistics of the measurements. In practical terms, one begins with an initial guess as to the expected value of a quantity, and then, using various methods and instruments, reduces the uncertainty in the value. Note that in this view, unlike the positivist representational theory, all measurements are uncertain, so instead of assigning one value, a range of values is assigned to a measurement. This also implies that there is not a clear or neat distinction between estimation and measurement.

Quantum mechanics[edit]

In quantum mechanics, a measurement is an action that determines a particular property (position, momentum, energy, etc.) of a quantum system. Before a measurement is made, a quantum system is simultaneously described by all values in a spectrum, or range, of possible values, where the probability of measuring each value is determined by thewavefunction of the system. When a measurement is performed, the wavefunction of the quantum system "collapses" to a single, definite value.[15] The unambiguous meaning of the measurement problem is an unresolved fundamental problem in quantum mechanics.[citation needed]

See also[edit]

References[edit]

  1. Jump up to:a b Pedhazur, Elazar J.; Schmelkin, Liora Pedhazur (1991). Measurement, Design, and Analysis: An Integrated Approach (1st ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 15–29. ISBN 0-8058-1063-3.
  2. Jump up to:a b International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM) (PDF) (3rd ed.). International Bureau of Weights and Measures. 2008. p. 16.
  3. Jump up^ Kirch, Wilhelm, ed. (2008). "Level of measurement". Encyclopedia of Public Health2. Springer. p. 81. ISBN 0-321-02106-1.
  4. Jump up^ Crease 2011, pp. 182–4
  5. Jump up^ C.S. Peirce (July 1879) "Note on the Progress of Experiments for Comparing a Wave-length with a Metre" American Journal of Science, as referenced by Crease 2011, p. 203
  6. Jump up^ Crease 2011, p. 203
  7. Jump up^ "About Us"National Measurement Institute of Australia.
  8. Jump up^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), p. 147, ISBN 92-822-2213-6archived (PDF) from the original on 2017-08-14
  9. Jump up^ Crease 2011, p. 261
  10. Jump up^ Groves, Robert (2004). Survey Methodology. New Jersey: Wiley. "By measurement error we mean a departure from the value of the measurement as applied to a sample unit and the value provided. " p 51-52 .
  11. Jump up to:a b Michell, J. (1999). Measurement in psychology: a critical history of a methodological concept. New York: Cambridge University Press.
  12. Jump up^ Ernest Nagel: "Measurement", Erkenntnis, Volume 2, Number 1 / December 1931, pp. 313–335, published by Springer, the Netherlands
  13. Jump up^ Stevens, S.S. On the theory of scales and measurement 1946. Science. 103, 677-680.
  14. Jump up^ Douglas Hubbard: "How to Measure Anything", Wiley (2007), p. 21
  15. Jump up^ Penrose, Roger (2007). The road to reality : a complete guide to the laws of the universe. New York: Vintage Books. ISBN 978-0-679-77631-4. "The jumping of the quantum state to one of the eigenstates of Q is the process referred to as state-vector reduction or collapse of the wavefunction. It is one of quantum theory's most puzzling features ..." "[T]he way in which quantum mechanics is used in practice is to take the state indeed to jump in this curious way whenever a measurement is deemed to take place." p 528 Later Chapter 29 is entitled the Measurement paradox.

External links[edit]

Navigation menu